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Abstract. We analyze a reaction-diffusion system modeling the competition

of multiple phytoplankton species which are limited only by light. While the
dynamics of a single species has been well studied, the dynamics of the two-

species model has only begun to be understood with the recent establishment
of a comparison principle. In this paper, we show that the competition of N

similar phytoplankton species, for any number N , generically leads to compet-

itive exclusion. The main tool is the theory of a normalized principal bundle
for linear parabolic equations.

1. Introduction. In this paper we analyze a reaction-diffusion model of the growth
of mulitple phytoplankton species in a eutrophic, vertical water column. In such
environments nutrients are in abundance and the different phytoplankton species
are typically limited by, and competing for, light only. Consider a water column
with unit cross-sectional area and with N phytoplankton species, for some N ≥ 2.
Let x denote the depth within the water column where x varies from 0 (the water
surface) to L (the bottom), and let ui(x, t) denote the population density of the
i-th species at the location x and time t. The following model was proposed by
Huisman et al [4, 5, 6].

∂tui = µi∂xxui − αi∂xui + ui [gi(I(x, t))− di] for 0 < x < L, t > 0, (1)

for i = 1, ..., N , and with no-flux boundary conditions

µi∂xui − αiui = 0 for x = 0, L, t > 0, i = 1, ..., N, (2)

and initial data

ui(x, 0) = ui,0(x) for 0 ≤ x ≤ L, i = 1, ..., N. (3)
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Here µi > 0 is the diffusion coefficient caused by turbulence, αi ∈ R is the sinking
(if αi < 0) or buoyant (if αi > 0) velocity, di > 0 is the loss rate. The water
column has vertical depth L > 0 and we denote x = 0 to be the water surface and
x = L to be the bottom. The term gi(I) represents the specific growth rate of the
i-th phytoplankton species, which depends on the light intensity I(x, t). By the
Lambert-Beer law, the light intensity I(x, t) takes the form

I(x, t) = I0e
−k0x exp

−k0x− N∑
j=1

kj

∫ x

0

uj(y, t) dy

 , (4)

where I0 > 0 is the incident light intensity, k0 > 0 is the background turbidity, ki
is the absorption coefficient of the i-th phytoplankton species.

The system (1)-(4) is intended to model a eutrophic water column, where nutrient
is in abundance, and phytoplankton species compete for light via shading. The
integral appearing in (4) is due to the fact that the light is able to reach to depth x
only after being absorbed by water and the biomass population at depth between
0 and x. In other words, the competition for light is nonlocal. The functions gi are
smooth and satisfy

gi(0) = 0, g′i(I) > 0 for I > 0 and gi ∈ L∞([0,∞)). (5)

Typical examples of gi include

gi(I) =
miI

ai + I
and gi(I) =

mi

ai
(1− e−aiI),

where mi, ai are positive constants.
The dynamics of the single species model is well-understood, thanks to the

order-preserving property that is satisfied by the cumulative distribution function
u∗(x, t) =

∫ x
0
u(y, t) dy. This was first observed by Shigesada and Okubo [19] in

the special case of (k0 = 0), when the cumulative distribution function actually
satisfies a closed equation without any nonlocal terms. This fact was exploited by
Ishii and Takagi [12] to show that the flow retains the natural order in u∗, and
derive the existence and global attractivity of the positive equilibrium. In the case
with background turbidity (k0 > 0), the global attractivity to equilibrium was first
proved by Du and Hsu [2]. See also [15, 18] for the case with time-periodic forcing.

When there is no background turbidity (k0 = 0), it can be shown [14] that the
single phytoplankton species can persist in any finite water column. When there
is background turbidity (k0 > 0), Ebert et al. [3] illustrated the existence of a
critical water column depth beyond which the single species cannot persist. This
and related notions, such as critical diffusion rate and critical sinking rate, were
subsequently analyzed by Hsu and Lou [11].

For multi-species competition, it was predicted by Huisman and Weissing [4, 5]
that competitive exclusion occurs in well mixed environments. This is opposed to
the apparent diversity of phytoplankton communities in nature, which is called the
paradox of plankton [10]. For N = 2, the existence of a positive steady state and
a uniform persistence result were established in [2]. In [13], a comparison principle
was established for the two-species case, and competitive exclusion results were
established. For N ≥ 3, only the existence of positive steady state has been proved
[16].

In this paper, we will introduce a method that is not contingent on the order-
preserving property of the semiflow. As a result, we are able to determine the
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global dynamical property of (1)-(4) for N species when N ≥ 3. Our results say
that competitive exclusion generically occurs for any number of species, provided
that they are sufficiently similar. As an application, we generalize the results in
[13] to N species. Mathematically, it is interesting that the global dynamics of
arbitrarily many species can sometimes be determined. This is possible thanks to a
novel result concerning the normalized principal bundle (see Proposition 2) which
is proved in [1].

Biologically interpreted, the results in this paper and [13] suggest that an eu-
trophic environment in and of itself does not promote coexistence of phytoplankton
species, and other factors, such as nutrient limitation, predation and seasonal forc-
ing, might be important.

1.1. Main results. We make two assumptions to simplify our problem. The first
main assumption is that the N species are sufficiently similar and are organized by
a trade-off curve, in the sense that

µi = µ(zi), αi = α(zi), di = d(zi)

for some smooth functions µ(z), α(z) and d(z) depending on a trait parameter z ∈ R
and (zi)

N
i=1 is a strictly increasing sequence. For example, we will consider the case

when µ = z varies across species, while α = α0 and d = d0 are constant; see
Theorems 1.2 – 1.4. The second assumption is that the growth function g(·) is the
same for all species. Next, by replacing g(I0 · ) by g(·) and ui by ui/ki, we obtain
the modified system
∂tui = µi∂xxui − αi∂xui + ui [g(I(x, t))− di] for 0 < x < L, t > 0, 1 ≤ i ≤ N,
I(x, t) = exp(−k0x−

∑N
j=1

∫ x
0
uj(y, t) dy) for 0 < x < L, t > 0,

µi∂xui − αiui = 0 for x = 0, L, t > 0, 1 ≤ i ≤ N,
ui(x, 0) = ui,0(x) for 0 ≤ x ≤ L, 1 ≤ i ≤ N,

(6)
where we assume

g(0) = 0, g(+∞) < +∞, g′(s) > 0 for s ≥ 0,

and
d∗ < g(e−k0L), where d∗ = sup

z∈I
d(z). (7)

Moreover, there exists C0 > 0 such that

1

C0
≤ µ(z) ≤ C0, |α(z)| ≤ C0, 0 < d(z) ≤ C0 for all z. (8)

Condition (7) means that, in the absence of phytoplankton, the growth rate is
everywhere positive, down to the bottom of the water column. This is used to
prove Lemma 2.3, that the trivial equilibrium is repelling in some uniform sense.

We will prove that, in general, competitive exclusion takes place when the N
species are similar. To state our theorem, we will introduce some notions from
adaptive dynamics. Consider the single species problem

∂tθ = µ(z)∂xxθ − α(z)∂xθ + [g(I(x, t))− d(z)]θ for 0 < x < L, t > 0,

µ(z)∂xθ − α(z)θ = 0 for x = 0, L, , t > 0,

u(x, 0) = u0(x) for x ∈ [0, L].

(9)

Under the assumption (7), it is well-known [2, 15, 18] that, for each z, (9) has a
unique positive equilibrium θz(x) that is globally asymptotically stable among all
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positive solutions of (9). Suppose a species with trait value ẑ is at equilibrium. A
natural question is whether a species with a different trait z 6= ẑ can invade this
resident equilibrium when rare. The answer can be given in terms of the sign of the
principal eigenvalue λ(z, ẑ) of the problem:

µ(z)φ′′(x)− α(z)φ′(x) + [g(σ∗(x))− d(z)]φ(x) + λφ(x) = 0 for 0 < x < L,

σ∗(x) = exp(−k0x−
∫ x
0
θẑ(y) dy) for 0 < x < L,

µ(z)φ′(x)− α(z)φ(x) = 0 for x = 0, L.

(10)
The quantity λ(z, ẑ) is called the invasion exponent. When λ(z, ẑ) < 0, the rare
invader with trait z can invade the resident with trait ẑ successfully. When λ(z, ẑ) >
0, the invasion fails. Note that when z = ẑ, then the invasion exponent vanishes,
as the equilibrium solution θẑ is a positive eigenfunction corresponding to the zero
eigenvalue. In partciular, for z ≈ ẑ, the invasion depends on the first derivative
∂zλ(z, ẑ)

∣∣
z=ẑ

, which is called the selection gradient.

Theorem 1.1. Suppose

∂zλ(z, ẑ)
∣∣
z=ẑ

> 0 for some ẑ. (11)

Then there exists ε > 0 such that for arbitrary N and arbitrary increasing sequence
(zi)

N
i=1 ⊂ (ẑ − ε, ẑ + ε), every positive solution (ui)

N
i=1 of (6) converges to the

equilibrium E1 = (θz1 , 0, ..., 0) as t→∞.

Remark 1. The case ∂zλ(z, ẑ)
∣∣
z=ẑ

< 0 can be transformed to ∂zλ(z, ẑ)
∣∣
z=ẑ

> 0,
by replacing z with −z. One can then argue similarly to show the global asymptotic
stability of the equilibrium EN = (0, ..., 0, θzN ).

As applications, we present three sufficient conditions in which the condition
(11) is verified. The first result says that, other things held constant, then the most
buoyant species wins.

Theorem 1.2. Suppose

µ(z) = µ0 > 0, α(z) = z, d(z) = d0.

Then for each ẑ ∈ R, there exists ε > 0 such that for any N and increasing sequence
(zi)

N
i=1 ⊂ (ẑ − ε, ẑ + ε), every positive solution of (6) converges to the equilibrium

E1 := (θz1 , 0, ..., 0).

The second result says that, if all the species are buoyant with the same buoyancy
velocity, then the slowest diffusing species wins.

Theorem 1.3. Suppose

µ(z) = z, α(z) = α0, d(z) = d0.

If α0 ≤ 0, then for each ẑ > 0, there exists ε > 0 such that for any N and
increasing sequence (zi)

N
i=1 ⊂ (ẑ− ε, ẑ+ ε), every positive solution of (6) converges

to the equilibrium E1 := (θz1 , 0, ..., 0).

The third result says that, if all the species are sinking with the same velocity,
and that velocity is large enough, then the fastest diffusing species wins.

Theorem 1.4. Suppose

µ(z) = z, α(z) = α0, d(z) = d0.
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If α0 ≥ [g(1)−d0]L, then for each ẑ > 0, there exists ε > 0 such that for any N and
increasing sequence (zi)

N
i=1 ⊂ (ẑ− ε, ẑ+ ε), every positive solution of (6) converges

to the equilibrium EN := (0, ..., 0, θzN ).

Remark 2. In [13], the case N = 2 was considered and the conclusion of Theorems
1.2-1.4 hold without the smallness condition on ε.

The rest of the paper is organized as follows: In Section 2, we derive some uniform
bounds for positive solutions to the time-dependent problem (6). In Section 3, we
use the smallness of ε to show that for any positive solutions (ui)

N
i=1 of (6), the total

population
∑N
i=1 ui eventually enters a neighborhood of the positive equilibrium of

the single species problem. In Section 4, we introduce the notion of normalized
principal bundle, which is a generalized notion of principal eigenvalue for elliptic or
periodic-parabolic operators. In Section 5, we prove a general exclusion criterion
and then give the proof of Theorem 1.1. Finally, we illustrate our main result by
proving Theorems 1.2-1.4 in Section 6.

2. A priori estimates. Define

G(s) =

∫ s

0

g(e−τ ) dτ − d∗s, where d∗ = inf
z∈I

d(z). (12)

Then G(0) = 0, G′(s) = g(e−s) − d∗, and, since G′(+∞) = −d∗ < 0, there exists
M1 > 0 such that

G(s) < 0 for s ≥M1. (13)

In the following we will also denote

û(x, t) =

N∑
i=1

ui(x, t), Ui(x, t) :=

∫ x

0

ui(y, t) dy and Û(x, t) =

N∑
i=1

Ui(x, t).

Lemma 2.1. Let (ui)
N
i=1 be a non-negative solution of (6) such that

N∑
i=1

‖ui(x, 0)‖L1([0,L]) ≤M,

then 
sup
t≥0

∑N
i=1 ‖ui(x, t)‖L1([0,L]) ≤ max{M,M1},

lim sup
t→∞

∑N
i=1 ‖ui(x, t)‖L1([0,L]) ≤M1.

(14)

Proof. Integrating (6) with respect to x from 0 to L, and adding i from 1 to N , we
obtain

d

dt
Û(L, t) =

∫ L

0

N∑
i=1

[g(exp(−k0x− Û(x, t)))− di]ui(x, t) dx

≤
∫ L

0

[g(exp(−Û(x, t))− d∗]∂xÛ(x, t) dx

=

∫ L

0

∂x[G(Û(x, t))] dx = G(Û(L, t)),

where we used G(0) = 0 and Û(0, t) = 0 in the last equality. Since G(s) < 0 for
s ≥M1, it is not difficult to deduce (14) from the above differential inequality.
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Lemma 2.2. There exists C1 such that for any N and any (zi)
N
i=1 ⊂ I, every

positive solution (ui)
N
i=1 (6) satisfies

lim sup
t→∞

N∑
i=1

‖ui(x, t)‖C2+α,1+α/2([0,L]×[t,t+1)) ≤ C1, (15)

where C1 depends on C0 from (8), but does not depend on the number N and the
initial data.

Proof. Fix an arbitrary positive solution (ui)
N
i=1 of (6). By Lemma 2.1,

lim sup
t→∞

N∑
i=1

‖ui‖L1([0,L]×[t,t+3]) ≤ 3M1,

so there exists T0 > 0 such that
N∑
j=1

‖ui‖L1([0,L]×[t,t+3]) ≤ 4M1 for t ≥ T0.

Observe that the equation of ui can be regarded as a linear parabolic equation with
non-autonomous coefficients:

∂tui − µi∂xxui − αi∂xui = σ̃i(x, t)ui, (16)

where
σ̃i(x, t) = g(exp(−k0x− Û(x, t)))− di ∈ L∞([0, L]× [0,∞)).

We can apply the uniform Harnack inequality [8, Theorem 2.5] to deduce that

sup
0<x<L

ui(x, t) ≤ CH inf
0<x<L

ui(x, t) for t ≥ 1. (17)

where CH does not depend on i and the initial data. Then, we have

‖ui‖L∞([0,L]×[t,t+3]) ≤ C‖ui‖L1([0,L]×[t,t+3]) ≤ C for t ≥ 1. (18)

Next, we apply the Sobolev embedding theorem and the parabolic Lp estimate
to the linear parabolic equation to improve the above estimate to

‖ui‖Cα,α/2([0,L]×[t+1,t+3]) ≤ C ′‖ui‖W 2+p,1+p([0,L]×[t+1,t+3])

≤ C‖ui‖L∞([0,L]×[t,t+3]) ≤ C‖ui‖L1([0,L]×[t,t+3]). (19)

Then σ̃i(x, t) in (16) is Hölder continuous, so that by parabolic Schauder estimate,
the above can then be improved to

‖ui‖C2+α,1+α/2([0,L]×[t+2,t+3]) ≤ C‖ui‖L1([0,L]×[t,t+3]). (20)

The desired conclusion follows by summing i from 1 to N , and taking supremum
for t ≥ T0 to obtain

N∑
j=1

‖ui‖C2+α,1+α/2([0,L]×[T0+2,∞)) ≤ C sup
t≥T0

N∑
j=1

‖ui‖L1([0,L]×[t,t+3]) ≤ 4CM1.

Note that all the constants are independent of N and (zi)
N
i=1, thanks to the as-

sumption (8). This completes the proof.

Lemma 2.3. There exists a constant δ0 > 0 such that for any positive solution
(ui)

N
i=1 of (6), we have

lim inf
t→∞

[
inf

0<x<L

N∑
i=1

ui(x, t)

]
≥ δ0.
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Proof. Let (ui)
N
i=1 be a positive solution of (6). Integrating (6) with respect to

x ∈ [0, L] and adding i from 1 to N , we have

d

dt
Û(L, t) ≥

∫ L

0

[g(e−k0x−Û(x,t))− d∗]
N∑
i=1

ui(x, t) dx

=

∫ L

0

∂x

[
G̃(k0x+ Û(x, t))− G̃(k0x)

]
dx

+ k0

∫ L

0

[
g(e−k0x)− g(e−k0x−Û(x,t))

]
dx

≥ G̃(k0L+ Û(L, t))− G̃(k0L) (21)

where G̃(s) =
∫ s
0
g(e−τ ) dτ − d∗s. Note that the last inequality follows from the

fact that g′(s) > 0 for s > 0.
Observe now that, by (7),

G̃′(k0L) = g(e−k0L)− d∗ > 0.

Hence there exists δ1 > 0 such that G̃(k0L+ s)− G̃(k0L) > 0 for s ∈ (0, δ1]. Since

the mapping t 7→ Û(L, t) satisfies the differential inequality (21), it follows that

lim inf
t→∞

N∑
i=1

‖ui‖L1[0,L] = lim inf
t→∞

Û(L, t) ≥ δ1.

By applying Harnack inequality (17) once again, we can convert the above lower
estimate of L1 integral to the desired pointwise estimate. This proves the lemma.

3. A rough estimate.

Proposition 1. For each η > 0, there exists ε > 0 such that for any N ∈ N and
(zi)

N
i=1 ∈ (ẑ − ε, ẑ + ε), any positive solution of (6) satisfies

lim sup
t→∞

∥∥ N∑
i=1

ui(·, t)− θẑ(·)
∥∥
C([0,L])

< η. (22)

Proof. Denote for simplicity µ̂ = µ(ẑ) and α̂ = α(ẑ). Let a positive solution (ui)
N
i=1

of the time-dependent problem (6) be given. Our goal is to show (22).
Suppose to the contrary that there is η0 > 0 such that for k ∈ N, there exists

Nk ∈ N, and sequences {µki }
Nk
i=1, {αki }

Nk
i=1 and a positive solution (uki )Nki=1 such that

sup
i

(|µki − µ̂|+ |αki − α̂|) <
1

k
, lim sup

t→∞

∥∥∥Ûk(x, t)− θẑ(x)
∥∥∥
C([0,L])

≥ η0,

where Ûk(x, t) =
∑Nk
i=1 u

k
i (x, t). We can infer that for each k, there exists {tkj }j →

∞ such that

inf
j≥1
‖Ûk(x, tkj )− θẑ‖C([0,L]) ≥ η0, for each k ≥ 1.

By the a priori estimate established in Lemma 2.2, we can pass to a subsequence
so that

Ûkj (x, t) := Ûk(x, t+ tkj )→ Ûk∞(x, t) as j →∞ in Cloc([0, L]× R),



1790 ROBERT STEPHEN CANTRELL AND KING-YEUNG LAM

where Ûk∞ is some entire solution of (6) satisfying

‖Ûk∞(x, 0)− θẑ(x)‖C([0,L]) ≥ η0, (23)

By Lemma 2.3 and by possibly taking a smaller η0, we may also assume that

inf
0<x<L

Ûk∞(x, t) ≥ η0, (24)

Now, since the estimate of Lemma 2.2 is independent of N , there is C1 indepen-
dent of k such that

‖Ûk∞‖C2+α,1+α/2([0,L]×R) ≤ C1 (25)

Hence we can again pass to the limit to assume that, as k → ∞, the sequence
{Ûk∞}k converges in Cloc([0, L] × R) to some bounded entire solution U∞ of the
single species equation (9) with z = ẑ. Moreover, by (23) and (24), U∞ satisfies

‖U∞(x, 0)− θẑ(x)‖C([0,L]) ≥ η0, (26)

and

inf
0<x<L

U∞(x, t) ≥ η0. (27)

But this is in contradiction with the fact that the equilibrium solution θẑ(x) attracts
all positive solutions of (9).

4. The normalized principal bundle. In this section, we define the notion of
a normalized principal bundle, which is a generalization of the notion of principal
eigenfunction of an elliptic, or periodic-parabolic operator. We state a theorem
concerning its smooth dependence on parameters.

4.1. The normalized principal bundle. Given three constants, µ, d > 0, α ∈ R
and a function h(x, t) ∈ Cβ,β/2([0, L]×R), we say that the pair (Ψ1(x, t), H1(t)) is
the corresponding normalized principal bundle if it satisfies

∂tΨ1(x, t)− µ∂xxΨ1(x, t) + α∂xΨ1(x, t) −h(x, t)Ψ1(x, t) + dΨ1(x, t)
= H1(t)Ψ1(x, t) for 0 < x < L, t ∈ R,

µ∂xΨ1(x, t)− αΨ1(x, t) = 0 for x ∈ {0, L}, t ∈ R,∫
D
|e−αx/µΨ1(x, t)|2 dx = 1 for t ∈ R,

Ψ1(x, t) > 0 for x ∈ [0, L], t ∈ R.

(28)

Letting ψ1(x, t) := e−αx/µΨ1(x, t), the above problem can be transformed to
∂tψ1(x, t)− µ∂xxψ1(x, t)− α∂xψ1(x, t) −h(x, t)ψ1(x, t) + dψ1(x, t)

= H1(t)ψ1(x, t) for 0 < x < L, t ∈ R,
∂νψ1(x, t) = 0 for x ∈ {0, L}, t ∈ R,∫
D
|ψ1(x, t)|2 dx = 1 for t ∈ R,

ψ1(x, t) > 0 for x ∈ [0, L], t ∈ R.

(29)

The existence and uniqueness of (ψ1(x, t), H1(t)) are proved in [17] (see also [8, 9]
or [1, Theorem A1] for details).

Remark 3. By the uniform Harnack inequailty (see [8, Theorem 2.5]) together

with the normalization
∫ L
0
|e−αx/µΨ1(x, t)|2 dx = 1 for t ∈ R, it follows that for

each δ > 0 there is C = Cδ > 0 such that if

µ, d ∈ [δ, 1/δ], |α|+ ‖h(x, t)‖C([0,L]×R) ≤ 1/δ,
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then
1

Cδ
≤ Ψ1(x, t) ≤ Cδ in [0, L]× R.

Remark 4. The notion of principal bundle is a natural generalization of the no-

tion of principal eigenvalue and eigenfunction. If h(x, t) = ĥ(x) for some time-

independent function ĥ, then ψ1 and H1 are time-independent, i.e.

Ψ1 = ψ̂(x) and H1 = λ̂.

Moreover, ψ̂(x) and λ̂ are the principal eigenfunction and principal eigenvalue of
the elliptic problem{

−µψ̂′′(x) + αψ̂′(x)− (ĥ(x)− d)ψ̂(x) = λ̂ψ̂(x) for 0 < x < L,

µψ̂′(x)− αψ̂(x) = 0 for x = 0, L.
(30)

The main result of this section is the smooth dependence of the principal bundle
on the coefficients.

Proposition 2. The normalized principal bundle, as a mapping from

(µ, α, d, h) 7→ (Ψ1, H1)
R+ × R× R+ × Cβ,β/2([0, L]× R) → C2+β,1+β/2([0, L]× R)× C1+β/2(R),

is smooth.

Proof. We refer to [1, Proposition A.2] for details.

Corollary 1. For given ẑ, z ∈ I, let λ(z, ẑ) and ψ̂(x; z, ẑ) be the principal eigenvalue
and eigenfunction of (10). Suppose ∂zλ(z, ẑ)

∣∣
z=ẑ

> 0 (resp. ∂zλ(z, ẑ)
∣∣
z=ẑ

< 0).

There exists η′ > 0 such that for any z and any function h(x, t) ∈ Cβ,β/2([0, L]×R),
if

|z − ẑ| < η′, and ‖h(x, t)− ĥ(x)‖Cβ,β/2([0,L]×R) < η′, (31)

where

ĥ(x) := g(exp(−k0x−
∫ x

0

θẑ(y) dy)), (32)

then the normalized principal bundle (Ψ1(x, t; z, h), H1(t; z, h)) of (28), correspond-
ing to the choice (µ(z), α(z), h(x, t)), is a smooth function from I ×Cβ,β/2([0, L]×
R)→ C1+β/2(R). Furthermore, it satisfies

∂zH1(t; z) ≥ η′ (resp. ∂zH1(t; z) ≤ −η′ ) for all t ∈ R, z ∈ (ẑ − η′, ẑ + η′),

where ∂zH1(t; z, h) is the partial derivative of H1(t; z, h) with respect to the scalar
parameter z.

Proof. Since the mappings z 7→ (µ(z), α(z), d(z)), and (µ, α, d, h) 7→ (Ψ1, H1) are
smooth, so is their composition (z, h) 7→ (Ψ1, H1). It remains to show the second
part of the corollary.

Consider ∂zλ(z, ẑ)
∣∣
z=ẑ

> 0. By Remark 4, we see that

(Ψ1(x, t; z, ĥ), H1(t; z, ĥ) = (φ(x), λ(z, ẑ))

where (φ(x), λ(z, ẑ)) is the principal eigenpair (10). By continuous dependence,
there is ε1 > 0 such that

η0 := inf
z∈[ẑ−ε1,ẑ+ε1]

d

dz
λ(z, ẑ) > 0.
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Now it follows from the smooth dependence of (Ψ1, H1) on (z, h) that there exists
η′ ∈ (0, η0/2) such that if (31) holds, then

sup
z∈[ẑ−ε1,ẑ+ε1]

‖∂zH1(·; z, h)− ∂zH1(·; z, ĥ)‖Cβ,β/2([0,L]×R)

=
∥∥∂zH1(·; z, h)− ∂zλ(z, ẑ)|z=ẑ

∥∥
Cβ,β/2([0,L]×R) <

η0
2
.

Hence, for z ∈ [ẑ − ε1, ẑ + ε1],

∂zH1(t; z, h) > ∂zλ(z, ẑ)|z=ẑ −
η0
2
≥ η0

2
> η′ for t ∈ R.

This proves the corollary.

5. A general exclusion criterion.

Proposition 3. Suppose ∂zλ(z, ẑ)
∣∣
z=ẑ

> 0 for some ẑ. There exists η > 0 such that

if (22) holds, then for any N and any increasing sequence (zi)
N
i=1 ⊂ (ẑ − η, ẑ + η),

every positive solution (ui)
N
i=1 of (6) converges to the equilibrium solution E1 =

(θz1 , 0, ..., 0) as t → ∞. i.e. The equilibrium E1 is globally asymptotically stable
among all positive solutions.

Remark 5. By a change of variables z 7→ C−z and analogous arguments, it follows
that if ∂zλ(z, ẑ)

∣∣
z=ẑ

< 0, then there exists η > 0 such that if (22) holds, then for

any N and any increasing sequence (zi)
N
i=1 ⊂ (ẑ − η, ẑ + η), every positive solution

of (6) converges to the equilibrium EN = (0, ..., 0, θzN ).

Proof. Let the parameter ẑ be given such that ∂zλ(z, ẑ)
∣∣
z=ẑ

> 0, and let η′ > 0 be

as given in Corollary 1. We claim that there is ε ∈ (0, η′) such that for any any N
and any (di)

N
i=1 ⊂ (ẑ − ε, ẑ + ε),

lim sup
t→∞

max
1≤i≤N

∥∥hi(x, t)− ĥ(x)
∥∥
Cβ,β/2([0,L]×[t,t+1])

< η′, (33)

where

h(x, t) = g(exp(−k0x− Û(x, t)) = g(exp(−k0x−
N∑
j=1

∫ x

0

uj(y, t) dy), (34)

and ĥ(x) is given in (32). Indeed, in view of Proposition 1 and the a priori estimate
(15), we can use interpolation to estimate

∥∥h(x, t)− ĥ(x)
∥∥
Cβ,β/2([0,L]×[t,t+1])

≤ C

∥∥∥∥∥
N∑
i=1

ui − θẑ(x)

∥∥∥∥∥
γ

L∞([0,L]×[t,t+1])

where C > 1 and 0 < γ < 1 are some positive constants in the interpolation
inequality. Hence, we deduce (33) upon taking η such that Cηγ < η′ and apply
Proposition 1.

Having proved (33), after possibly a translation in time, we may assume without
loss of generality that

‖h(·, t)− ĥ‖Cα,α/2([0,L]×[0,∞)) < η′. (35)

Extend h(x, t) evenly in t, so that it is defined for (x, t) ∈ [0, L] × R. Since (ẑ −
ε, ẑ + ε) ⊂ (ẑ − η′, ẑ + η′), we have verified (31).
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Let Ψ1(x, t; z, h) and H1(t; z, h) be the normalized principal bundle considered
in the statement of Corollary 1. We have, for any z ∈ [ẑ − ε, ẑ + ε],

inf
t∈R

∂zH1(t; z, h) ≥ η′ > 0. (36)

For each i, we claim that there is ci > ci > 0 such that

cie
−

∫ t
0
H1(s;zi,h) dsΨ1(x, t; zi, h) ≤ ui(x, t) ≤ cie−

∫ t
0
H1(s;zi,h) dsΨ1(x, t; zi, h) (37)

for (x, t) ∈ [0, L]× R.
Indeed, the left and right hand sides of (37) satisfy the same equation as ui.

Hence we can choose ci large enough and ci small enough to deduce (37) from the
classical comparison theorem of linear parabolic equations. This proves (37).

By (36), we have

H1(t; zi, h)−H1(t; z1, h) ≥ (zi − z1)η′ > 0 for all i > 1, and all t ∈ R.
Hence, we derive from (37) that, for i > 1,

ui(x, t)

u1(x, t)
≤ C exp

(
−
∫ t

0

(H1(s; zi)−H1(s; z1)) ds

)
Ψ1(x, t; zi, h)

Ψ1(x, t; z1, h)

≤ C exp (−(zi − z1)η′t)→ 0 as t→∞.
Note that we have used Remark 3, which gives a constant C > 0 (that is independent
of i) such that for z ∈ (ẑ − ε, ẑ + ε),

1

C
≤ Ψ1(x, t; z, h) ≤ C in [0, L]× R.

Since we also have lim sup
t→∞

∑N
i=1 ‖ui‖ ≤ C1 (by Lemmas 2.1 and 2.2), we deduce

that ui → 0 uniformly for i = 2, .., N . Hence the semiflow generated by (6) is
asymptotic to the single species model consisting of only the first species u1. Since
the trivial solution is repelling (by Lemma 2.3), we deduce that u1 → θz1 uniformly
as t→∞.

Proof of Theorem 1.1. Let η be given by Proposition 3. We can then choose ε ∈
(0, η) by Proposition 1 such that for any N and (zi)

N
i=1 ∈ (ẑ − ε, +̂ε), any positive

solution (ui)
N
i=1 of (6) satisfies (22). It then follows from the choice of η above

and Proposition 3 that E1 = (θz1 , 0..., 0) is globally asymptotically stable among
all positive solutions of (6).

6. Applications. We generalize several exclusion results in [13], involving only
two species, to general N -species competition. First, we recall the following mono-
tonicity property of the eigenvalues of some elliptic problems. For µ, d > 0, α ∈ R
and ĥ ∈ L∞([0, L]), let Λ1(µ, α, d, ĥ) be the principal eigenvalue of{

µφ′′ − αφ′ + (ĥ(x)− d)φ+ Λ1φ = 0 for 0 < x < L,

µφ′ − αφ = 0 for x = 0, L.
(38)

Lemma 6.1. If ĥ ∈ C1([0, L]) and satisfies ĥ′(x) < 0 in [0, L], then the following
assertions hold.

(a) ∂αΛ1(µ, α, d, ĥ) > 0 for any µ, d > 0 and α ∈ R.

(b) ∂µΛ1(µ, α, d, ĥ) > 0 for any µ, d > 0 and α ≤ 0.

(c) If α ≥ [ĥ(0)− d]L and Λ1(µ∗, α, d, ĥ) = 0 for some µ∗ > 0, then

∂µΛ1(µ∗, α, d, ĥ) < 0.
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Proof. Let Φ(x) = e−αx/µφ(x). Then (38) becomes{
µΦ′′ + αΦ′ + (ĥ(x)− d)Φ + Λ1Φ = 0 for 0 < x < L,

Φ′ = 0 for x = 0, L.

The proof of assertion (a) is similar to [11, Lemma 5.2] and we omit it here. The
proofs of assertions (b) and (c) can be found in [13, Lemma 4.9].

6.1. Proof of Theorems 1.2 – 1.4. First, we consider the case

µ(z) = µ0 > 0, α(z) = z, d(z) = d0 > 0, (39)

and prove Theorem 1.2.

Proof of Theorem 1.2. For z, ẑ ∈ R, the principal eigenvalue λ(z, ẑ) of (10) can be
represented as

λ(z, ẑ) = Λ1(µ0, z, d0, hA),

where hA(x) = g(exp(−k0x −
∫ x
0
θẑ(y) dy)) and θẑ is the positive equilibrium so-

lution of the single species equation (9) with coefficients satisfying (39). It is easy
to see that hA ∈ C1([0, L]) and h′A < 0 in [0, L]. By Lemma 6.1(a), it follows
that ∂zλ(z, ẑ)

∣∣
z=ẑ

> 0. Hence, we may apply Theorem 1.1 to deduce the global
asymptotic stability of E1 among all positive solutions.

The proof of Theorem 1.3 is similar and we omit the details.
Next, we consider the case

µ(z) = z, d(z) = d0 > 0, α(z) = α0 ≥ [g(1)− d0]L, (40)

and prove Theorem 1.4.

Proof of Theorem 1.4. For z, ẑ ∈ R, then the principal eigenvalue λ(z, ẑ) of (10)
can be represented as

λ(z, ẑ) = Λ1(z, α0, d0, hB),

where hB(x) = g(exp(−k0x −
∫ x
0
θẑ(y) dy)), and θẑ is the unique positive solution

of {
ẑθ′′ẑ − α0θ

′
ẑ + (g(exp(−k0x−

∫ x
0
θẑ(y) dy))− d0)θẑ = 0 for 0 < x < L,

µ0θ
′
ẑ − ẑθẑ = 0 for x = 0, L.

It follows that Λ1(ẑ, α0, d0, hB) = 0, since 0 is an eigenvalue admitting a positive
eigenfunction θẑ. Also, observe that

α0 ≥ [g(1)− d0]L = [hB(0)− d0]L,

so that we can apply Lemma 6.1(c) to deduce that

∂zλ(z, ẑ)
∣∣
z=ẑ

= ∂µΛ1(ẑ, α0, d0, hB) < 0.

The desired conclusion now follows from Theorem 1.1 and Remark 1.
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[7] J. Húska and P. Poláčik, The principal Floquet bundle and exponential separation for linear
parabolic equations, J. Dynam. Differential Equations, 16 (2004), 347–375.
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